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Creating an ensemble of yield functions

§ Performed least-square analysis of three types of data
• Mass yields as a function of A, Y(A)
• Average total kinetic energy as a function of heavy fragment 

mass, TKE(AH)
• Width of TKE distribution, sTKE, as a function of AH

§ Generated best mean value as well as covariance matrix 
containing uncertainties and correlations, as outlined below

§ A total of 15,000 yield functions were generated for input into 
FREYA to study consequences of varying the input on neutron 
observables
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Mass and charge yields for 252Cf(sf)
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Average total kinetic energy vs. heavy fragment mass
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Additional uncertainties added at A’s near 
symmetry and very asymmetric splits:
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Width of TKE(AH) less well determined
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Example of typical yield function

Contour plot with projection on the A-TKE plane
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§ FREYA modified from standard version to take Y(A,Z,TKE) as input
§ Initial nucleus has mass number A0 and charge Z0

§ Joint yield function is normalized to unity:

§ First, mass of one fragment is selected, followed by its charge

§ TKE selected from probability distribution

Event selection
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§ Mass and charge of complementary fragments are A’ = A0 – A, Z’ = 
Z0 – Z, Q value calculated and total excitation energy obtained:

§ Excitation energy split between rotational and intrinsic, E* = Erot + Eint

§ Intrinsic excitation energy split between fragments, first by statistical 
partitioning by level densities to EL’ and EH’, then by favoring the light 
fragment giving it an additional energy, EL* = xEL’, EH* = Eint – EL’

§ Standard FREYA allows further fluctuations affecting neutron 
multiplicity distribution but because TKE width is fixed, this is not 
done in this study

§ Finally, TKE is adjusted by parameter dTKE to give evaluated value 
of average neutron multiplicity, 3.765

Event generation
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Calculation of observables

§ Take ensemble of yield functions and run FREYA for 
each given yield function, calculate results ensemble 
average

§ For comparison, results are also shown for generating 
the observables by reusing the average yield function 
the same number of times
• In this case, there are no ensemble fluctuations, only 

statistical ones
§ Compare results for averaging over the entire ensemble 

and reusing the same yield function equally many times
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Neutron multiplicity P(n) and moments
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Prompt fission neutron spectrum and covariances
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Neutron-neutron correlations

§ Only events producing at least two neutrons contribute to the 
two-neutron directional distribution

§ Cosine of opening angle between two neutron directions

§ Distribution as a function of angle with normalization
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Directional distribution with variance

§ Distribution shown in figure, variance shown in error 
bars, ensemble of distributions compared to sampling 
from same initial distribution the same number of times
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Correlations between neutron multiplicity and TKE
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TKE distribution and effect on neutron multiplicity
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Bias of average TKE imposed by n--
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Sensitivity to input parameter x

75 100 125 150 175
Fragment mass number A

0

1

2

3

4

M
ea

n 
ne

ut
ro

n 
m

ul
tip

lic
ity

 ν
(A

)
Measured
x = 1.3
x(A)

252Cf(sf)

80 90 100 110 120
Light-fragment mass number AL

0.0

0.5

1.0

1.5

2.0

En
er

gy
 s

ha
rin

g 
pa

ra
m

et
er

 x
(A

L)

252Cf(sf)

FREYA uses a single valued parameter, x, to divide up the excitation energy 
between light and heavy fragments, other codes like CGMF and FIFRELIN
use a mass dependent “x” parameter, RT(A) in CGMF, determined from data,
to partition excitation energy.   We also examined how results would change if
such a method were adopted in FREYA.

x(A) determined from n(A) data n(A) with fixed x and x(A) 
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Sensitivity of observables to x variations
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n(A) and e(A) are significantly changed
by the way x is calculated but the
changes to the n-n correlations are
much smaller, other observables
essentially unaffected by x changes
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§ In standard FREYA, c controls width of variance in statistical excitation 
energy; changing c from 1 to 1.5 changes neutron multiplicity by 1.5%; in 
reality, average neutron multiplicity provides tightest constraint on c

§ Rotational fluctuations controlled by parameter cS, varying this parameter 
can have a large effect on neutron multiplicity because giving more energy 
to photon emission reduces neutron multiplicity and vice versa; within 
uncertainties of recent optimization, neutron multiplicity can vary by 2%

§ Varying the asymptotic level density parameter as represented by e0 can 
change neutron multiplicity because increasing e0 increases fragment 
temperature, hardening the neutron spectrum and decreasing multiplicity; 
within uncertainties on e0, multiplicity can change by 2.7%

§ Individual variations need to be taken in context of all observables, thus true 
variations in multiplicity are more tightly constrained and will not be so large

Sensitivity to other parameter variations
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Summary

§ We have studied sensitivity of neutron observables to input fission 
fragment yields and input parameters
• The sensitivity to the input yields is generally small
• We can set tighter constraints on TKE than given by the data
• Parameter sensitivity important but large excursions in 

parameter space are constrained by optimizations
§ FREYA available from http://nuclear.llnl.gov//simulation/ and CPC 

code library
§ User manuals also available online

http://nuclear.llnl.gov/simulation/
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FREYA references 
§ FREYA developed in collaboration with J. Randrup (LBNL); neutron-transport code 

integration by J. Verbeke (LLNL); available in MCNP6.2
§ FREYA journal publications: Phys. Rev. C 80 (2009)  024601, 044611; 84 (2011) 

044621; 85 (2012) 024608; 87 (2013) 044602; 89 (2014) 044601; 90 (2014) 
064623; 96 (2017) 064620; version 1.0 in Comp. Phys. Comm. 191 (2015) 178; 
version 2.0.2 in Comp. Phys. Comm. 222 (2018) 263.

§ Invited book chapter, R. Vogt and J. Randrup, “Nuclear Fission”, Chapter 5 of ‘100 
Years of Subatomic Physics’, World Scientific, 2013

§ Review in Eur. Phys. J. A 54 (2018) 9
§ Contributed to (and coauthored) papers on neutron polarization in photofission, 

Mueller et al, Phys. Rev. C 89 (2014) 034615; neutron-gamma correlations,     
Wang et al, Phys. Rev. C 93 (2016) 014606, Marcath et al, Phys. Rev. C 97 (2018) 
044622, Marin et al, arxiv:1907.01483; neutron-neutron correlations, Schuster et al, 
Phys. Rev. C 100 (2019) 014605; Verbeke et al, Phys. Rev. C 97 (2018) 044601; 
Pozzi et al, Nucl. Sci. Eng. 178 (2014) 250.

§ Isotopes currently included: spontaneous fission of 252Cf, 244Cm, 238,240,242Pu, 238U 
and neutron-induced fission of 233,235,238U(n,f), 239,241Pu(n,f) for En ≤ 20 MeV


